科学研究
报告题目:

$L^2$ methods in infinite dimensional spaces

报告人:

余佳洋 副教授(四川大学)

报告时间:

报告地点:

金沙9001cc诚为本东北楼四楼报告厅(404)

报告摘要:

The classical $L^2$ estimate for the $\overline{\partial}$ operators is a basic tool in complex analysis of several variables. Naturally, it is expected to extend this estimate to infinite dimensional complex analysis, but this is a longstanding unsolved problem, due to the essential difficulty that there exists no nontrivial translation invariance measure in the setting of infinite dimensions. The main purpose in this series of work is to give an affirmative solution to the above problem, and apply the estimates to the solvability of the infinite dimensional $\overline{\partial}$ equations. In this part, we consider the most difficult case, i.e., the underlying space is a general pseudo-convex domain. In order to solve this longstanding open problem, we introduce several new concepts and techniques, which have independent interest and pave the way for research that investigates some other issues in infinite-dimensional analysis.

报告人简介:

余佳洋,2014年博士毕业于复旦大学数学科学学院, 现为四川大学数学学院副教授。主要从事泛函分析方向的研究,研究兴趣包括无穷维分析、函数空间上的算子论、算子Lehmer问题等。主持国家自然科学基金青年基金,参与国家自然科学基金重点项目,在 Trans. Amer. Math. Soc., J.Math.Pures Appl., Illinois J. Math. 和Sci.China Math.发表系列论文。